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Abstract—We present a new program to generate a virtual library of structures. GAsp (Génération Automatique de Structures Polycycliques)
answers to a question like: generate all structures with 3 rings of size 4, 6 and 8 for example. We present the results obtained for ‘isomers’ of
several structures (steroid, taxane and triquinane skeletons). For steroid skeleton (4 rings of size 6, 6, 6 and 5) 988 structures were generated.
Among them 48 are composed of fused rings. Comparison with the Beilstein database showed that among these 48 structures 21 are new.
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1. Introduction

Combinatorial chemistry has become an important incen-
tive tool for the generation of new structures.' Millions of
molecules can be made in a matter of months with the
hope to discover new leads. Nevertheless these approaches
generate new structures by combinations of substituents,
the core of the structures being known: thiazole, amides,
amines, etc. The novelty originates from the way to
assemble all the possible substituents owing to the auto-
mation of the process.

In the field of computer chemistry, programs have been
written which generate libraries of virtual structures by
a method similar to combinatorial chemistry.” These
structures can then be evaluated to select those which
seem interesting.” Works have also been developed in the
field of de novo generation of molecules.* Programs have
been written which generate isomers of a given gross
formula® and, in a related field, simulation of reactions
have been developed.® Recently G. Brinkmann et al.
published a program which generates polycyclic chains
with arbitrary ring size.” This prompted us to publish our
work in this field.

We designed a new approach for the generation of struc-
tures. The aim of this program is to answer the following
problem: generate all skeletons with a given number of
rings whose size is determined. For example: generate all
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skeletons with three rings, one of size 5 and two of size 6.
All rings (fused, bridged or spiro) are generated. In this
paper we describe this program called Gasp (Génération
Automatique de Structures Polycycliques).

2. Program

We developed a simple method to write this program. GASP
works like the chemist who draws a ring, then adds another
ring, and so on: GASP starts with a ring, i.e. its connectivity
table, then it adds the second ring in all possible positions,
then, on each generated structure it adds the third ring, and
so on. An example will be used to show the different steps of
the program: the generation of structures with 3 rings of size
4,5,6.

The first step is to calculate the set of combinations, i.e. the
order in which the rings will be generated. GASP can start
with a ring of size 4 (in the paper sentence like ‘ring of size
4’ will be summarised by ring-4), then it generates the
ring-5 and then the ring-6, but other combinations are pos-
sible: 4,6,5—5,4,6—5,64—6,4,5 and 6,54. However
some combinations lead to identical structures: if the
program starts with a ring-4 then it adds the ring-5 or the
contrary (ring-5 then ring-4) it will generate the same struc-
tures (Scheme 1).

Scheme 1.
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Scheme 2.

So the number of combinations is divided by two, and, for
this example, only combinations 4,5,6—4,6,5 and 5,6,4 will
be generated.

The second problem is the construction of the structures, i.e.
their connectivity tables. Starting with a given ring, the
program has to add a new ring. To do that it determines
the set of atom pairs in the structure. For example for a
ring-4 (Scheme 2).

The pairs are: (1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4),
3,3), (3,4) and (4,4). The distance, i.e. the number of
bonds, between two atoms of each pair is calculated. If
the distance (d) is equal to 0, the new ring is added on the
same atom which generates a spiro structure. If d=1, the
structure is fused and when d>1 the structure is bridged.

1
6 2 add ring-5
5 3
2

Scheme 3.
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The distance allows to calculate the number of bonds which
are necessary to build the new ring. If the program has to
generate a ring of size S on a given structure, the number of
bonds that it has to add is equal to S—d as it can be seen in
Scheme 2.

A particular case can be met: for example we want to gener-
ate all structures having two rings, one of size 6 and one of
size 5. Having the ring-6, the program generates, in a second
step, a ring-5, leading to spiro, fused and bridged structures,
as indicated above (Scheme 3).

But when it adds two bonds on the pair (1,4) it generates
structure 2 (Scheme 3). For bridged structures only the two

smallest rings are counted. In structure 2 there are two rings
of size 5 (2a, 2b) and the six membered ring is not counted.
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delete
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spiro bonds

Scheme 5.

Scheme 6.

This new structure is not formed by a ring-6 and a ring-5
and does not satisfy to the condition. So it is necessary, for

2 each generated structure, to verify if the wanted rings are
present.

It is also necessary to avoid the generation of identical
structures. For example when the program adds a new
ring, in the spiro case, on structure 1 (Scheme 2), this ring
can be added on atoms 1, 2, 3 or 4. But these atoms are

7 equivalent and the generated structures would be identical.

7b

So, each structure is canonized, according to Moreau’s algo-
Scheme 7. rithm,® in order to search for equivalent atoms. When a new

Input of the number of rings (NbRing) and their size.
Generation of all combinations (NbComb) (for example : 4,5,6 — 5,6.4, etc.)
FOR1=1 to NbComb
Generation of the first ring : partial structure 1 (P.S.1) NbPS = 1
FOR J =2 to NbRing
K=0
DO
K=K+1
calculate all pairs (NbPairs) in P.S.K
For N=1 TO NbPairs
On P.S.K add ring J -> generate a structure.
Verify if the desired rings are present
IF J = NbRing then
A final structure is generated
IF it is new THEN it is saved on disk
ELSE
A Partial Structure is generated
IF this P.S. is new THEN it is saved (NbPS =NbPS +1)
END IF
NEXT N
LOOP while K<= NbPS
NEXT J
NEXT 1
Calculate relationships of each structure
Display all or selected structures

Scheme 8.
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Figure 1. Fused structures found in the Beilstein database for the 6, 6, 6, 5 combination. The number of hits is displayed below each structure.
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BHBPE

Figure 2. New fused structures generated for the 6, 6, 6, 5 combination.

ring is added on a pair of atoms, GASP uses the equivalency
of atoms to discard equivalent pairs: this control reduces the
number of generated structures.

Nevertheless identical structures can be generated by differ-
ent combinations. For example combination (4,5,6) and
(4,6,5) generate the same structure (Scheme 4). It is thus,
again necessary to verify for each structure if it is actually a
new one, by comparing their canonical names.

When all structures have been generated GASP calculates the
relationships between the different rings present in each
structure, i.e. the number of spiro, fused, bridged. This
can be done only at the end of the program: structure 3 is
spiro, but the spiro relationship disappears in structure 4
(Scheme 4), in which there are two fused rings. Some
problems arise when searching these relationships. They
are briefly described below:

When GAsP counts the common atoms between the ring-4
and ring-6 in 4, it finds one atom. To verify if it is a true
spiro atom, it deletes the spiro atom and the bonds starting
from it, obtaining structure 5 (Scheme 5).

If the final connectivity table is composed of one structure

this one is not counted as spiro. If there are two structures
such as in 6, it is a true spiro (Scheme 6).

Some cases are not obvious such as in 7 and necessitate an
accurate analysis (Scheme 7).

The first analysis finds the following relationships:

Ring #1 and ring #2: bridged.
Ring #1 and ring #3: fused.
Ring #2 and ring #3: fused.

If the first relationship is true, the two others are not, since
ring #1 and ring #2 generate a fourth ring which is bridged
with ring #3 (7b). For such structures GAsp finds two
bridges, and no fused rings.

These relationships are stored with the structures and they
can be used for the visualisation of the results: the user can
see all the structures generated, but an option allows him to
see the structures with a given number of fused, spiro or
bridges, these numbers can be any, <, > or = to a given
value. For example he can see the structures where all the
rings are fused and having neither spiro atoms nor brigdes.
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Figure 3. Fused four five membered rings and the number of hits in the Beilstein database.

GASP is written in VisualBasic. It has been tested on a
300 MHz compatible IBM/PC. The time for generating
structures with three rings is less than one minute. For
four rings the time can reach half an hour. It is due to the
number of comparisons to perform the elimination of
identical structures and access to the disk. This approach
could certainly be improved, but our aim was not to have a
very fast but a simple program able to verify our basic idea
and to rapidly provide the chemist with a complete answer
to the question ‘Generate all the structures possessing a

m
¢
(

Figure 4. Complex structures with four five membered rings.

given number of rings whose size is determined’ in view
to suggest him new structures. The flowchart of Scheme 8
summarises the main steps of the program.

3. Results

GASP has been tested on many combinations. We give here
the results obtained for the generation of some structures
with three and four rings. The first case is composed of four
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Figure 5. Fused rings of size 6, 6 and 8.

rings, three of size 6 and one of size 5. It corresponds to the
steroid skeleton since it is a structure of particular interest.
The second case corresponds to a tetraquinane structure
with four rings of size 5 which can be found in the crini-
pellin skeleton and the last case is composed of three rings
of size 6, 6 and 8 which can be encountered in the taxol
skeleton (Scheme 9).

For the ‘steroid’ case GAsP generated 988 structures in
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Figure 6. Bridged rings of size 6, 6, 8.
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35 min. Since the most frequent rings in organic chemistry
are fused ones, we present the results given by the option
which allows to display the desired structures. Gasp found
48 structures with fused rings, they are displayed in Figs. 1
and 2. We interrogated the Beilstein database’ to know if
these skeletons have already been synthesised. In the query
the bond order was set to ‘any’ allowing one to search
not only skeletons but also structures having double
bonds, and all atoms sites were set to free, i.e. they can
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have any substituents. The number of hits found by this
search for known structures is displayed in Fig. 1. It is
interesting to see that several new structures have been
generated (Fig. 2).

For the tetraquinane case GASP generated 161 structures in
less than one minute. Among these 161 structures, only 13
skeletons are composed of fused rings. These results are
displayed in Fig. 3 with the number of hits found in the
Beilstein data base. This case presents less possibilities,
nevertheless two structures seem new. We show in Fig. 4
some new complex structures generated in this case.

In the last case (three rings of size 6, 6, 8) 78 structures were
generated in less than one minute. We show in Fig. 5 the
nine skeletons in which the rings are fused and in Fig. 6 the
skeletons with one bridge as in the case of taxol. Several
new structures were generated.

These results are encouraging and could give new directions
of research for the synthetic chemist.

4. Conclusion

We developed an original program to generate new struc-
tures from a simple algorithm which generates structures
with a given number of rings of given sizes, for example,
the user can ask the computer to generate all structures with
3 rings the size of which are 5, 6 and 8. In the case of the
steroid like skeleton (4 rings of size 6,6,6,5) it generates 988
structures. Among them there are 48 structures in which all
four rings are fused, and among these 48 skeletons, 21 are
new, which is interesting in view of detecting new lead
structures. In the infinite world of polycyclic structures,
GASP can help the chemist in the recognition of terra
incognita.
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